Local Heat Transfer Distribution and Effect of Instabilities During Flow Boiling in a Silicon Microchannel Heat Sink
نویسندگان
چکیده
Flow boiling of the perfluorinated dielectric fluid FC-77 in a silicon microchannel heat sink is investigated. The heat sink contains 60 parallel microchannels each of 100 m width and 389 m depth. Twenty-five evenly distributed temperature sensors in the substrate yield local heat transfer coefficients. The pressure drop across the channels is also measured. Experiments are conducted at five flow rates through the heat sink in the range of 20 to 80 ml/min with the inlet subcooling held at 26 K in all the tests. At each flow rate, the uniform heat input to the substrate is increased in steps so that the fluid experiences flow regimes from single-phase liquid flow to the occurrence of critical heat flux (CHF). In the upstream region of the channels, the flow develops from single-phase liquid flow at low heat fluxes to pulsating two-phase flow at high heat fluxes during flow instability that commences at a threshold heat flux in the range of 30.5 62.3 W/cm2 depending on the flow rate. In the downstream region, progressive flow patterns from bubbly flow, slug flow, elongated bubbles or annular flow, alternating wispy-annular and churn flow, and wall dryout at highest heat fluxes are observed. As a result, the heat transfer coefficients in the downstream region experience substantial variations over the entire heat flux range, based on which five distinct boiling regimes are identified. In contrast, the heat transfer coefficient midway along the channels remains relatively constant over the heat flux range tested. Due to changes in flow patterns during flow instability, the heat transfer is enhanced both in the downstream region (prior to extended wall dryout) and in the upstream region. A previous study by the authors found no effect of instabilities during flow boiling in a heat sink with larger microchannels (each 300 m wide and 389 m deep); it appears therefore that the effect of instabilities on heat transfer is amplified in smaller-sized channels. While CHF increases with increasing flow rate, the pressure drop across the channels has only a minimal † The experiments of this work were performed when the lead author was a Post-doctoral Researcher at Purdue University.
منابع مشابه
Numerical investigating the gas slip flow in the microchannel heat sink using different materials
In this work, slip flow of helium gas has been studied in a three dimensional rectangular microchannel heat sink with 11 microchannel and 10 rectangular fins. Helium gas flow is considered ideal and incompressible. The finite volume method with using coupled algorithm is employed to carry out the computation. To validate the present work, comparison with numerical and experimental studies is do...
متن کاملSubcooled two-phase flow boiling in a microchannel heat sink: comparison of conventional numerical models
Subcooled flow boiling in multi-microchannels can be used as an efficient thermal management approach in compact electrical devices. Highly subcooled flow boiling of HFE 7100 is studied in two microchannel heat sinks to choose a proper numerical model for simulating boiling flows in microchannels. Results of five different numerical models, including Volume of Fluid (VOF), Eulerian boiling, Eul...
متن کاملThree dimensional numerical study on a trapezoidal microchannel heat sink with different inlet/outlet arrangements utilizing variable properties nanofluid
Nowadays, microchannels as closed circuits channels for fluid flow and heat removal are an integral part of the silicon-based electronic microsystems. Most of previous numerical studies on microchannel heat sinks (MCHS) have been performed for a two-dimensional domain using constant properties of the working fluid. In this study, laminar fluid flow and heat transfer of variable properties Al2O3...
متن کاملExperimental study of convective heat transfer coefficient of MgO nanofluid in a cylindrical microchannel heat sink
Convective heat transfer of MgO-water nanofluid in a microchannel heat sink is experimentally investigated in various concentrations of 0.01, 0.05, 0.1, and 0.6 wt%. The microchannel consisted of 48 parallel rectangular cross section channels with the height of 800 µm, width of 524 µm and length of 52 mm. A well stability duration (ca. 1 month) was resulted by a 180 min ultra-sonication of the ...
متن کاملMeasurements and high-speed visualizations of flow boilingof a dielectric fluid in a silicon microchannel heat sink
Experiments were conducted to investigate flow boiling heat transfer to a dielectric fluid in a silicon chip-integrated microchannel heat sink. Twenty-four microchannels, each 389 m 389 m in crosssection, were fabricated into the 12.7 mm 12.7 mm silicon substrate. High-speed visualizations (at 12,500 frames per second) were performed simultaneously with heat transfer and pressure drop mea...
متن کامل